segunda-feira, 4 de março de 2019

o sistema relativista categorial Graceli para termodinâmica, entropia, entalpia, mar de Dirac,  Gato de Schrödinger, incerteza de Heisenberg, exclusaõ de Pauli, gás de Fermi, e outros variam conforme categorias de Graceli e seu sistema de dez dimensões e estados de Graceli.


veremos para gás de Fermi.


x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Um gás de férmionsgás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.
A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperatura e pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quântico pode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.
É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.
Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.

Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação  dos estados  com a energia  da estatística de Fermi-Dirac:
Onde  é o potencial químico a temperatura e  a constante de Boltzmann.
Estes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.

Gás de Fermi como modelo para os núcleos dos átomos[editar | editar código-fonte]

O primeiro pesquisador a apontar uma explicação simples para o movimento independente de núcleons através do núcleo atômico em seus estado fundamental foi Weisskopf.[1]Tal explicação usa como base o modelo de gás de Fermi. O modelo utilizado é essencialmente o mesmo utilizado para tratar de elétrons livres em um metal condutor. É suposto que cada núcleon do núcleo atômico mova-se num potencial efetivo atrativo que representa um efeito médio de suas interações com os outros núcleons naquele núcleo. Há um valor constante dentro do núcleo para este potencial e externamente ao núcleo ele decresce até zero a uma distância igual ao alcance das forças nucleares e é aproximadamente igual a um poço quadrado infinito e tridimensional, de raio ligeiramente superior ao raio do núcleo.[2] O núcleo atômico contém dois tipos de partículas, os prótons e os neutrons e ambos têm um momento angular intrínseco, ambos são classificados como férmions de spin 1/2, mas sendo duas partículas distinguíveis o princípio de exclusão de Pauli age independentemente sobre cada um deles. Assim podemos considerar que o núcleo é constituído por dois gases de Fermi, o dos prótons e o dos nêutrons e que corresponderão a dois estado energéticos diferentes e cada estado só pode ser ocupado por apenas dois prótons ou dois nêutrons, com spins de sinais opostos.[3][4][5]



x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmionsidênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos , e  são iguais nos dois elétrons, estes deverão necessariamente ter os números  diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.











O princípio de exclusão de Pauli é um dos mais relevantes princípios da física, basicamente porque os três tipos de partículas que formam a matéria ordinária - elétrons, prótons e nêutrons - têm que satisfazê-lo. O princípio de exclusão de Pauli é a razão fundamental para muitas das propriedades características da matéria, desde sua estabilidade até a existência das regularidades expressas pela tabela periódica dos elementos.
O princípio de exclusão de Pauli é uma consequência matemática das propriedades do operador momento angular, que é o gerador das operações de rotação, em mecânica quântica. A permutação de partículas num sistema de duas partículas idênticas (que é matematicamente equivalente à rotação de cada partícula de um ângulo de 180 graus) deve resultar em uma configuração descrita pela mesma função de onda da configuração original (quando as partículas têm spin inteiro) ou numa mudança de sinal desta função de onda (para partículas de spin semi-inteiro). Por isso, duas partículas de spin semi-inteiro não podem estar em um mesmo estado quântico, já que a função de onda do sistema composto pelas duas teria que ser igual a sua simétrica, e a única função que atende a esta condição é a função identicamente nula.
Partículas com função de onda anti-simétrica são chamadas férmions, e obedecem ao princípio de exclusão de Pauli. Além das mais familiares já citadas - elétron, próton e nêutron - são também fermions o neutrino e o quark (que são os constituintes elementares dos prótons e nêutrons), além de alguns átomos, como o hélio-3. Todos os férmions possuem spin "semi-inteiro", o que quer dizer que seu momento angular intrínseco tem valor  (a constante de Planck dividida por ) multiplicada por um semi-inteiro (, etc.). Na teoria da mecânica quântica, fermions são descritos por "estados anti-simétricos", que são explicados em mais detalhes no artigo sobre partículas idênticas.
Um sistema formado por partículas idênticas com spin inteiro é descrito por uma função de onda simétrica; estas partículas são chamadas bósons. Ao contrário dos fermions, elas podem partilhar um mesmo estado quântico. São exemplos de bósons o fóton e os bósons W e Z.

História[editar | editar código-fonte]

No início do século XX tornou-se evidente que átomos e moléculas com elétrons emparelhados ou um número par de eletrons são mais estáveis que aqueles com um número ímpar de eletrons. Num artigo publicado em 1916 por Gilbert N. Lewis[1], por exemplo, a regra três dos seis postulados propostos pelo autor para explicar o comportamento químico das substâncias estabelece que um átomo tende a ter um número par de elétrons em sua camada de valência, sendo esse número, de preferência oito, que estão normalmente dispostos simetricamente nos oito vértices de um cubo (ver: átomo cúbico). Em 1922 Niels Bohr mostrou que a tabela periódica pode ser explicada pela hipótese de que certos números de elétrons (por exemplo, 2, 8 e 18) correspondem a "camadas fechadas" estáveis.
Pauli procurou uma explicação para estes números, que eram a esta altura apenas empíricos. Ao mesmo tempo, ele estava tentando explicar certos resultados experimentais envolvendo o Efeito Zeeman em espectroscopia atômica e no ferromagnetismo. Ele encontrou uma pista essencial em um artigo de 1924 escrito por E.C.Stoner, que estabelecia que, para um dado valor do número quântico principal (), o número de níveis de energia de um eletron no espectro de um átomo de metal alcalino posto sob a ação de um campo magnético externo, situação na qual todos os níveis de energia degenerados são separados, é igual ao número de elétrons na camada fechada de um gás nobrecorrespondente ao mesmo valor de . Este fato levou Pauli a perceber que os números aparentemente complicados de elétrons em camadas fechadas podem ser reduzidos a uma regra muito simples, a de que só pode haver um elétron em cada estado atômico, definido por um conjunto de quatro números quânticos. Para esta finalidade ele introduziu um novo número quântico com apenas dois valores possíveis, identificado por Samuel Goudsmit e George Uhlenbeck como o spin do eletron.

Conexão com a simetria do estado quântico[editar | editar código-fonte]

O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado  (nota) enquanto a outra está no estado  é
No entanto, se  e  são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.

Consequências[editar | editar código-fonte]

O princípio de exclusão de Pauli ajuda a explicar uma grande variedade de fenômenos físicos. Um destes fenômenos é a "rigidez" ou "resiliência" da matéria ordinária (fermions): o princípio proíbe que fermions idênticos sejam espremidos uns contra os outros (cf. módulo de Young e módulo de rigidez de sólidos), e por isso nossas observações quotidianas do mundo macroscópico mostram que objetos materiais colidem, ao invés de atravessar uns aos outros, e de que somos capazes de nos apoiar de pé sobre o solo sem nele afundar. Outra consequência deste princípio é a elaborada estrutura das camadas eletrônicas dos átomos e a maneira como átomos partilham eletrons na formação da variedade de moléculas ou substância químicas e a gama de suas combinações (química). Um átomo eletricamente neutro contém eletrons ligados em número igual ao de protons de seu núcleo. Como os eletrons são fermions, o princípio de exclusão de Pauli os proíbe de ocupar o mesmo estado quântico, e por isso os eletrons tem que se "empilhar" em estados quânticos diversos no interior de um átomo.
Considere, por exemplo, um átomo de hélio neutro, que tem dois eletrons ligados. Ambos podem ocupar o estado de mais baixa energia () mas para isso têm que ter spins opostos. Isto não viola o princípio de Pauli porque o spin é parte da caracterização do estado quântico do eletron, e por isso os dois eletrons ocupam estados quânticos diferentes. No entanto, o spin só pode ter dois valores diferentes (ou autovalores). Num átomo de lítio, que contém três eletrons ligados, o terceiro eletron não pode ocupar um estado , já que resultaria com o spin, e portanto o estado quântico, igual a algum dos dois primeiros, e tem que ocupar um dos estados  de energia mais alta. De forma análoga, os elementos sucessivos vão requerer que os eletrons adicionais vão ocupando estados de energia cada vez mais alta, a cada vez que um número par de eletrons esgota os estados disponíveis no estado anterior. As propriedades químicas de uma substância depende fortemente do número de eletrons em sua camada mais externa, o que dá origem à tabela periódica dos elementos.
Em condutores e semi-condutoreselétrons livres têm que partilhar o espaço total disponível no interior do material - e por isso seus níveis de energia se empilham criando uma estrutura de bandas a partir de cada nível de energia atômico. Em bons condutores (metais) os eletrons estão tão fortemente degenerados que eles acabam por não contribuir de forma significativa para a capacidade térmica do metal. Muitas propriedades mecânicas, elétricas, magnéticas, ópticas e químicas dos sólidos são consequências diretas da repulsão de Pauli entre eletrons livres ou semi-livres.
Astronomia mostra outra demonstração espetacular deste efeito, na forma de estrelas anãs brancas e estrelas de nêutron. Em ambos os tipos de objetos, a estrutura atômica usual da matéria ordinária é quebrada por forças gravitacionais enormes, fazendo com que a estabilidade seja suportada apenas pela "pressão de degenerescência". Esta forma exótica de matéria é chamada de matéria degenerada. Nas anãs brancas, os átomos são impedidos de colapsar uns sobre os outros pela pressão de degenerescência de seus eletrons. Nas estrelas de neutrons, que exibem forças gravitacionais ainda mais intensas, os eletrons e os protons colapsam formando neutrons, que são capazes de produzir pressões de degenerescência maiores. Os neutrons são os objetos mais "rígidos" conhecidos - seu módulo de Young, ou mais apropriadamente módulo de rigidez é 20 ordens de grandeza maior que o do diamante.
De acordo com a relatividade geral, as forças gravitacionais no centro de um buraco negro se tornam tão intensas que toda a matéria se quebra em seus constituintes fundamentais, que são supostamente puntiformes e sem estrutura interna. Todas estas partículas poderiam se empilhar em um ponto zero dimensional porque as forças gravitacionais seriam maiores que a pressão de degenerescência. Isto parece violar o princípio de exclusão de Pauli, mas já que o interior de um buraco negro está além do horizonte de eventos, ele é inacessível a verificação experimental e esta hipótese permanece sem comprovação possível.




x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Em 1877Ludwig Boltzmann visualizou um método probabilístico para medir a entropia de um determinado número de partículas de um gás ideal, na qual ele definiu entropia como proporcional ao logaritmo neperiano do número de microestados que um gás pode ocupar:
Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.
O trabalho de Boltzmann consistiu em encontrar uma forma de obter a equação entrópica fundamental S a partir de um tratamento matemático-probabilístico [Nota 10]facilmente aplicável aos sistemas em questão. Ao fazê-lo, conectou o todo poderoso formalismo termodinâmico associado à equação fundamental a um método de tratamento probabilístico simples que exige apenas considerações físicas primárias sobre o sistema em análise, obtendo, a partir de considerações básicas, todo o comportamento termodinâmico do sistema. A equação de Boltzman mostra-se muito importante para o estudo termodinâmico de tais sistemas, e reconhecida como tal pelo próprio autor, encontra-se gravada em sua lápide